947 research outputs found

    Composite lacunary polynomials and the proof of a conjecture of Schinzel

    Full text link
    Let g(x)g(x) be a fixed non-constant complex polynomial. It was conjectured by Schinzel that if g(h(x))g(h(x)) has boundedly many terms, then h(x)\in \C[x] must also have boundedly many terms. Solving an older conjecture raised by R\'enyi and by Erd\"os, Schinzel had proved this in the special cases g(x)=xdg(x)=x^d; however that method does not extend to the general case. Here we prove the full Schinzel's conjecture (actually in sharper form) by a completely different method. Simultaneously we establish an "algorithmic" parametric description of the general decomposition f(x)=g(h(x))f(x)=g(h(x)), where ff is a polynomial with a given number of terms and g,hg,h are arbitrary polynomials. As a corollary, this implies for instance that a polynomial with ll terms and given coefficients is non-trivially decomposable if and only if the degree-vector lies in the union of certain finitely many subgroups of Zl\Z^l.Comment: 9 page

    Advanced Placement Science Programs in Catholic High School

    Get PDF
    The purpose of this study was to examine Advanced Placement (AP) science programs in participating Catholic high schools and develop guidelines for the implementation of similar programs at other Catholic schools. The areas of interest were curriculum, instruction, and Advanced Placement examination results. Administrators and teachers at Catholic high schools with Advanced Placement science programs were surveyed using instruments developed by the researcher. The responses of AP teachers and administrators were analyzed and compared in order to determine important features of existing science programs

    Screening for UBE3A gene mutations in a group of Angelman syndrome patients selected according to non-stringent clinical criteria

    Get PDF
    Abstract.: The Angelman syndrome (AS) is caused by genetic abnormalities affecting the maternal copy of chromosome region 15q12. Until recently, the molecular diagnosis of AS relied on the detection of either a deletion at 15q11-13, a paternal uniparental disomy (UPD) for chromosome 15 or imprinting mutations. A fourth class of genetic defects underlying AS was recently described and consists of mutations of the UBE3A gene. The vast majority of mutations reported so far are predicted to cause major disruptions at the protein level. It is unclear whether mutations with less drastic consequences for the gene product could lead to milder forms of AS. We report on our results obtained by screening 101 clinically diagnosed AS patients for mutations in the UBE3A gene. Non-stringent clinical criteria were purposely applied for inclusion of AS patients in this study. The mutation search was carried out by single-strand conformation polymorphism (SSCP), and SSCP/restriction fragment length polymorphism (RFLP) analyses and revealed five novel UBE3A gene mutations as well as three different polymorphisms. All five mutations were detected in patients with typical features of AS and are predicted to cause frameshifts in four cases and the substitution of a highly conserved residue in the fifth. The results we obtained add to the as yet limited number of reports concerning UBE3A gene mutations. Important aspects that emerge from the data available to date is that the four classes of genetic defects known to underlie AS do not appear to cover all cases. The genetic defect underlying approximately 10% of AS cases, including some familial cases, remains unknow

    4q32-q35 and 6q16-q22 are valuable candidate regions for split hand/foot malformation

    Full text link
    On the basis of the Human Cytogenetic Database, a computerized catalog of the clinical phenotypes associated with cytogenetically detectable human chromosome aberrations, we collected from the literature 102 cases with chromosomal aberrations and split hand/foot malformation or absent fingers/toes. Statistical analysis revealed a highly significant association (P<0.001) between the malformation and the chromosomal bands 4q32-q35, 5q15, 6q16-q22 and 7q11.2-q22 (SHFM1). Considering these findings, we suggest additional SHFM loci on chromosome 4q, 6q and probably 5q. The regions 4q and 6q have already been discussed in the literature as additional SHFM loci. We now show further evidence. In the proposed regions, there are interesting candidate genes such as, on 4q: HAND2, FGF2, LEF1 and BMPR1B; on 5q: MSX2, FLT4, PTX1 and PDLIM7; and on 6q: SNX3, GJA1, HEY2 and Tbx18.European Journal of Human Genetics advance online publication, 18 February 2009; doi:10.1038/ejhg.2009.11

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number

    Parental origin of the two additional haploid sets of chromosomes in an embryo with tetraploidy

    Full text link
    We report on the molecular investigations performed on an embryo with tetraploidy, karyotype 92,XXXY. The embryo was spontaneously aborted after eight weeks of gestation. Molecular analyses were performed in order to determine the parental origin and mode of formation of the two additional haploid sets of chromosomes. Microsatellite markers mapping to pericentromeric chromosome regions were used. Our results show a maternal origin of one additional set of chromosomes most likely due to the incorporation of the polar body of meiosis I and a paternal origin of the second additional set of chromosomes most likely due to dispermy. The karyotype 92,XXXY is rather unusual, indeed the vast majority of cases with tetraploidy have the karyotypes 92,XXXX or 92,XXYY. To the best of our knowledge this is the first case with 92,XXXY for which molecular investigations have been performed
    corecore